65 research outputs found

    Fast Algorithms for Displacement and Low-Rank Structured Matrices

    Full text link
    This tutorial provides an introduction to the development of fast matrix algorithms based on the notions of displacement and various low-rank structures

    Reverse k Nearest Neighbor Search over Trajectories

    Full text link
    GPS enables mobile devices to continuously provide new opportunities to improve our daily lives. For example, the data collected in applications created by Uber or Public Transport Authorities can be used to plan transportation routes, estimate capacities, and proactively identify low coverage areas. In this paper, we study a new kind of query-Reverse k Nearest Neighbor Search over Trajectories (RkNNT), which can be used for route planning and capacity estimation. Given a set of existing routes DR, a set of passenger transitions DT, and a query route Q, a RkNNT query returns all transitions that take Q as one of its k nearest travel routes. To solve the problem, we first develop an index to handle dynamic trajectory updates, so that the most up-to-date transition data are available for answering a RkNNT query. Then we introduce a filter refinement framework for processing RkNNT queries using the proposed indexes. Next, we show how to use RkNNT to solve the optimal route planning problem MaxRkNNT (MinRkNNT), which is to search for the optimal route from a start location to an end location that could attract the maximum (or minimum) number of passengers based on a pre-defined travel distance threshold. Experiments on real datasets demonstrate the efficiency and scalability of our approaches. To the best of our best knowledge, this is the first work to study the RkNNT problem for route planning.Comment: 12 page

    Parallel Tempering Simulation of the three-dimensional Edwards-Anderson Model with Compact Asynchronous Multispin Coding on GPU

    Get PDF
    Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. One of the obstacles in the Monte Carlo simulation of random frustrated systems is their long relaxation time making an efficient parallel implementation on state-of-the-art computation platforms highly desirable. The Graphics Processing Unit (GPU) is such a platform that provides an opportunity to significantly enhance the computational performance and thus gain new insight into this problem. In this paper, we present optimization and tuning approaches for the CUDA implementation of the spin glass simulation on GPUs. We discuss the integration of various design alternatives, such as GPU kernel construction with minimal communication, memory tiling, and look-up tables. We present a binary data format, Compact Asynchronous Multispin Coding (CAMSC), which provides an additional 28.4%28.4\% speedup compared with the traditionally used Asynchronous Multispin Coding (AMSC). Our overall design sustains a performance of 33.5 picoseconds per spin flip attempt for simulating the three-dimensional Edwards-Anderson model with parallel tempering, which significantly improves the performance over existing GPU implementations.Comment: 15 pages, 18 figure

    Microstructure morphology and solute segregation in non-equilibrium solidification of metastable immiscible Cu50Co50 alloy

    Get PDF
    AbstractNon-equilibrium solidification of undercooled metastable immiscible Cu50Co50 alloy was performed by using glass-fluxing coupled with cyclic superheating method. The evolutions of microstructure morphology and solute segregation were elucidated as a function of initial undercooling. As for the samples undercooled by 62K and 105K, α-Co dendrites form primarily from the homogeneous liquid phase and then break into granular grains during the recalescence process. Moreover, the growth of dendrite changes from the solute-controlled mode to thermal-controlled mode with increasing undercooling, which generates the reduction of trunk size and the increase of solute content. In contrast, dual-layer structure prevails for larger undercoolings, i.e., 188K and 220K, where the strengthened immiscible effect leads to the decrease of solute content in separated phases and the occurrence of second separation. As for the sample with separated melt structure, nucleation triggering was adopted and serious shrinkage cavities can be observed due to the inadequate feeding of residual liquid

    25-Hydroxyvitamin D and Vitamin D Binding Protein Levels in Patients With Primary Hyperparathyroidism Before and After Parathyroidectomy

    Get PDF
    Objective: To evaluate vitamin D binding protein and free 25-hydroxyvitamin D [25(OH)D] levels in healthy controls compared to primary hyperparathyroidism (PHPT) patients, and to examine PHPT before and after surgery.Methods: Seventy-five PHPT patients and 75 healthy age, gender, and body mass index (BMI) -matched control subjects were examined. In addition, 25 PHPT patients underwent parathyroidectomy and had a 3-month follow up visit. Levels of total and free 25(OH)D, DBP, and intact parathyroid hormone (iPTH) were determined before and 3 months after surgery.Results: There was no significant difference in age and BMI between PHPT patients and controls. Levels of 25(OH)D and DBP were lower in PHPT patients compared to controls (p < 0.01). There was no significant difference in calculated free and bioavailable 25(OH)D levels between PHPT patients and controls. Calcium and iPTH levels decreased to normal but DBP and DBP-bound-25(OH)D increased (P < 0.001) after parathyroidectomy. Levels of DBP were inversely correlated with iPTH (r = −0.406, P < 0.001) and calcium levels (r = −0.423, P < 0.001).Conclusion: Serum DBP levels were lower in patients with PHPT and parathyroidectomy restored DBP levels. We suggest that lower DBP levels is one of contributing mechanisms of low total 25(OH)D in PTHP patients and the total 25(OH)D levels might not reflect true vitamin D status in PHPT patients

    A 130nm 1Mb Embedded Phase Change Memory with 500kb/s Single Channel Write Throughput

    Get PDF
    Abstract A 130 nm 1Mb embedded phase change memory (PCM) has been achieved, requiring only three additional masks for phase change storage element, featuring 500 kb/s single channel write throughput and > 10 8 endurance. The prepare process has been optimized to reduce the cost and power. An 80 nm heat electrode has been prepared with 130 nm process. The optimal Read/Write circuit module is designed to realize the load/store function for PCM. The critical operation parameter is Reset/70 ns/2.5 mA and Set/1500 ns/1 mA, which means that the signal channel write throughput arrives to 500 kb/s
    • …
    corecore